Geometry

Unit	Time Period	Essential Skills	Standards
Foundations of Geometry	11 days	Points, Lines, \& Planes Measuring Segments and Angles Segments \& Angles with Algebra Coordinate Plane	G.LA.1: Use precise definitions and standard geometric notation for angles, perpendicular lines, parallel lines, and line segments based on the undefined notions of point, line, and distance along a line. G.LA.7: Prove and apply theorems about lines and angles including: - Vertical angles, - Angles formed by parallel lines cut by a transversal, and - Points on a perpendicular bisector.
Geometric Reasoning	10 days	Inductive \& Deductive Reasoning Conditional Statements Matrix Logic Venn Diagrams	G.LA.7: Prove and apply theorems about lines and angles including: - Vertical angles, - Angles formed by parallel lines cut by a transversal, and - Points on a perpendicular bisector. G.LA.5: Prove and apply slope criteria of parallel and perpendicular lines to solve problems. G.RT.2: Prove and apply the Pythagorean Theorem and its converse. G.GF.7: Prove that a given quadrilateral is a parallelogram, rhombus, rectangle, square, kite, or trapezoid, and apply these relationships to solve problems. G.GF.8: Prove and apply theorems about triangles including: - Angle-Sum Theorem, - Exterior Angle Theorem, - Isosceles Triangle Theorem and its converse, - Midsegment Theorem, - Proportionality Theorem, - Inequality Theorem and its converse, and - Geometric Mean Theorem.
Distance \& Midpoint	8-9 days	Distance Formula	G.LA.3: Determine the point that cuts a line

		Midpoint Formula Pythagorean Theorem Constructions	segment into a specified ratio on a number line and a coordinate plane, including finding the midpoint. G.LA.4: Derive the distance and midpoint formulas and use the formulas, including the slope formula, to verify geometric relationships on a coordinate plane. G.LA.2: Make formal geometric constructions with a variety of tools and methods including: - Congruent segments and angles, - Segment and angle bisectors, - Perpendicular lines and perpendicular bisectors of a line segment, - Parallel lines, and - An equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Parallel Lines with Transversals	$\begin{aligned} & 12-14 \\ & \text { days } \end{aligned}$	Lines and Angles Parallel lines and Transversals Perpendicular Lines	G.LA.7: Prove and apply theorems about lines and angles including: - Vertical angles, - Angles formed by parallel lines cut by a transversal, and - Points on a perpendicular bisector.
Equations of Lines	10 days	Slopes Point-Slope Slope-Intercept Parallel/Perpendicular Equations	G.LA.6: Write an equation of a line that is parallel or perpendicular to a given line and passing through a given point. G.LA.5: Prove and apply slope criteria of parallel and perpendicular lines to solve problems.
 Attributes of Triangles \& Triangle Congruence	10-13	Classifying Triangles Congruent Triangles Isosceles and Equilateral Triangles Perpendicular and angle bisectors Medians and Altitudes of Triangles Midsegments of Triangles Pythagorean Theorem	G.SC.4: Explain, using rigid motion transformations, why two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. G.SC.5: Develop and apply the criteria for triangle congruence (ASA, SAS, AAS, SSS, and HL) to solve problems and prove geometric relationships. G.GF.4: Apply the Pythagorean Theorem to determine missing measurements in a three-dimensional figure. G.RT.2: Prove and apply the Pythagorean

			Theorem and its converse.
Right Triangle \& Trigonometry	12 days	Trigonometric Ratios Solving Right Triangles Angles of Elevation and Depression Special Right Triangles	G.RT.1: Apply the properties of special right triangles ($30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$) to solve real-world and mathematical problems. G.RT.3: Explain how the definitions for trigonometric ratios are developed by similarity and how the side ratios in right triangles are properties of the angles in the triangle. G.RT.4: Explain the relationship between the sine and cosine of complementary angles and use them to solve problems. G.RT.5: Determine the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles.
Similarity	9 days	Ratios and Proportions Triangle Similarity Properties of Similar triangles	G.SC.1: Given two figures, apply the definition of similarity in terms of a dilation to identify similar figures, proportional sides, and corresponding congruent angles. G.SC.2: Develop and apply the criteria of similarity for triangles (AA~, SAS~, and SSS~~) to solve problems and prove geometric relationships. G.SC.3: Use transformations to prove all circle are similar.
Polygons \& Quadrilaterals	11 days	Properties and attributes of Polygons Parallelograms	G.GF.6: Apply theorems about quadrilaterals, including those involving angles, diagonals, and sides to solve problems. G.GF.7: Prove that a given quadrilateral is a parallelogram, rhombus, rectangle, square, kite, or trapezoid, and apply these relationships to solve problems. G.GF.8: Prove and apply theorems about triangles including: - Angle-Sum Theorem, - Exterior Angle Theorem, - Isosceles Triangle Theorem and its converse, - Midsegment Theorem, - Proportionality Theorem, - Inequality Theorem and its converse, and - Geometric Mean Theorem.
Transformational	11 days	Rotations and Reflections	G.TRF.1: Describe rotations, reflections, and

Geometry		Transformations Symmetry Tessellations	translations as functions that take points in the coordinate plane as inputs and give other points as outputs; write in prime notation. G.TRF.2: Compare transformations that preserve distance and angle (rotations, reflections, and translations) to those that do not (dilations) to develop definitions for congruence and similarity. G.TRF.3: Apply understanding of angles, circles, perpendicular lines, parallel lines, and line segments to develop definitions for rotations, reflections, and translations. G.TRF.4: Use geometric constructions to represent rotations, reflections, translations, and dilations in the plane with a variety of tools and methods. G.TRF.5: Given two congruent figures, identify the sequence of transformations that maps one figure to another. G.RT.6: Use trigonometric ratios (sine, cosine, and tangent) to calculate missing side lengths and angle measures in a right triangle, including applications of angles of elevation and depression; include real-world and mathematical problems.
Perimeter, Circumference, \& Area	12 days	Triangles and Quadrilaterals Circles and Regular Polygons Composite Figures Changing Dimensions Geometric Probability	G.GF.9: Calculate the perimeter of polygons when given the vertices, including using the distance formula. G.GF.10: Calculate the area of triangles and rectangles when given the vertices, including using the distance formula and decomposing figures. G.GF.11: Describe reflectional and rotational symmetry as they apply to a rectangle, parallelogram, trapezoid, or regular polygon. G.GF.12: Calculate probabilities as a proportion of area in a geometric context.
Spatial Reasoning	10 days	Solid Geometry Nets Surface Area and Volume	G.GF.1: Find the volume and surface area of complex three-dimensional figures composed of prisms, pyramids, cones, cylinders, and spheres. G.GF.2: Use three-dimensional geometric figures and their measures to model realworld objects and solve problems. G.GF.3: Explain why the formulas

			for the volume and surface area of a cylinder, pyramid, and cone work. G.GF.4: Apply the Pythagorean Theorem to determine missing measurements in a three-dimensional figure. G.GF.5: Identify the threedimensional figure generated by rotating a twodimensional figure.
Circles	9 days	Equations of Circles Arcs and Chords Sector Area and Arc length Inscribed Angles Segment of Circle	G.CIR.1: Apply the precise definition and standard geometric notation for a circle to understand geometric relationships. G.CIR.2: Recognize and apply relationships between angles, radii, and chords, tangents, and secants including: - The relationship between central, inscribed, and circumscribed angles, - Inscribed angles on a diameter are right angles, - The radius of a circle is perpendicular to the tangent where the radius intersects the circle, and - The relationship of angles and segments formed by chords, secants and/or tangents to a circle. G.CIR.3: Use the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems. G.CIR.4: Use the proportional relationship between the measure of the area of a sector of a circle and the area of the circle to solve problems. G.CIR.5: Explain why the formulas for the area and circumference of a circle work using dissection and informal limit arguments. G.CIR.6: Write the equation of a circle, given the radius and center, where the center is at the origin or another point.

| | | G.CIR.7: Identify the center and radius of a
 circle, given the equation of a circle, where the
 center is at the origin or another point. |
| :--- | :--- | :--- | :--- |
| G.CIR.8: Apply the equation of a
 circle to solve
 real-world problems. | | |

